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The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation.

We report minimum energy paths and accurate energetics for a pathway leading to vinylacetylene
and for a number of isomers of C4H 4. The calculations use complete active space self-consistent
field (CASSCF) derivative methods to characterize the stationary points and internally contacted

configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational

estimate of triple excitations [CCSD(T)] to determine the energetics. We find an entrance channel

barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above

reactants for the reaction pathway leading to vinylacetylene. © 1995 American Institute of Physics.
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I. INTRODUCTION

The formation of the first aromatic ring is widely held to
be the rate limiting step in the formation of soot in the com-

bustion of aliphatic fuels. One mechanism for the formation

of the first aromatic ring involves stepwise addition of acety-
lenes to give first C4H3 radical and then phenyl radical.J The

interaction of two ground state acetylene molecules with

each other is expected to be repulsive by either Woodward-
Hoffman rules 2 or the orbital phase continuity principle; 3 and

in this work no low-energy pathway was found for the reac-

tion of two ground state acetylenes. On the other hand, the
reaction of vinylidene with acetylene is found to occur by a

low-energy pathway as discussed here.

The vinylidene molecule has been studied extensively by

both theory and experiment. The current state of knowledge
has been summarized by Schaefer and co-workers. 4 Vinyli-

dine is found to be a shallow minimum on the C2H2 potential
energy surface about 43 kcal/mol above acetylene and sepa-

rated from acetylene by a barrier of about 3 kcal/mol (in
addition to the exoergicity). The vinylidene molecule has

been observed experimentally in the high resolution stimu-
lated emission pumping spectrum of acetylene 5 and in the

ultraviolet photoelectron spectrum of CH2C-.6,7 The lifetime

of vinylidene has been estimated to be 0.04-0.20 ps.

Vinylidene has also been proposed as an intermediate in
the dimerization of acetylene. Kiefer et al. 8 have proposed

that the thermal decomposition of vinylacetylene involves an

initial elimination of vinylidene followed by rapid rearrange-
ment of the vinylidene to a second acetylene. The derived

barrier for this process suggests that the reverse process of

addition of vinylidene to acetylene has little or no barrier.
Many of the stationary point structures discussed here

have also been considered by Melius et al. 9 in their studies

of the thermal decomposition of vinylacetylene and by Koll-
mar, Carrion, Dewar, and Bingham l° in their studies of the

C4H 4 potential energy surface. Recently the vinylvinylidene

a)Presentaddress: San Diego Supercomputer Center, P.O. Box 85608, San
Diego, California 92168-9784.

species has been observed experimentally in the Lineberger
group. H

In Sec. II we discuss qualitative features of the reactions
considered here. Section III discusses the technical details of

the calculations, Sec. IV discusses the results, and Sec. V

concludes the paper.

II, QUALITATIVE FEATURES

Figure 1 shows (in schematic form) the electronic struc-

ture of the stationary points along the minimum energy path-

way from vinylidene plus acetylene to vinylacetylene, while

Fig. 2 shows the geometries of each of the stationary points.
Figure l(a) shows the triple bond structure of acetylene,

while Fig. 1(b) shows the electronic structure of vinylidene.

In vinylidene one _r bond is lost compared to acetylene, but
there is a strong angular correlation effect of the carbene

electron pair in the direction of the missing 7r bond. In the
following it is useful to think of the electrons of the carbene
electron pair as two sp 2 hybrid orbitals (referred to as lobes)

which are singlet paired. Thus, the most important electron

correlation effects for the vinylidene plus acetylene region of

the potential energy surface are for the two 7r bonds in acety-
lene and the one qr bond and the carbene pair in vinylidene
(8 active electrons).

By analogy to the reaction of CH(2II)+N2,12 the saddle

point for the addition of vinylidene to acetylene involves a
nearly parallel approach of the CH and acetylene as indicated

in Fig. l(c) (structure sp 1). The electronic interaction in-
volves the formation of a bond between one lobe of the car-

bene pair of vinylidene and one p orbital of the in plane ,r

bond of acetylene. This arrangement allows a high overlap to

also be maintained between the other lobe of the carbene pair

and the other p orbital of the in plane 7r bond of acetylene.
This leads to structure mini, the electronic structure of

which is shown in Fig. l(d). Figure l(d) has two in plane

singly occupied orbitals; these are singlet paired due to
through bond coupling effects (i.e., the singlet is lower in

energy than the triplet).
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FIG. 1. The electronic structure of selected stationary points on the C4H 4 potential energy surface.

The conversion from minl to rain2 (methylenecyclopro-

pene) involves an inversion of the end CH group and a re-

coupling of the in-plane electrons, leading to the structure

shown in Fig. 1(e). Min2 can open leading to rain3, which is

shown in Fig. 1(f). Min3 also has two in-plane singly occu-

pied orbitals, which are singlet coupled. Inversion of the end

CH group leads to rain4, which is shown in Fig. l(g). A

1,3-hydrogen shift converts min4 to min5 (vinylvinylidene),

which is shown in Fig. l(h). The end carbon of vinylvi-

nylidene is carbene like and rain5 can undergo a facile 1,2-

hydrogen shift leading to vinylacetylene, which is shown in

Fig. l(i).

FIG. 2. Stationary point geometries for the minimum energy path leading
from vinylidene plus acetylene to vinylacetylene.

Top row: spl, mini, sp2, min2.
Middle row: sp3, min3, sp6, rain4.
Bottom row: sp5, rainS, sp7, rain7.

III. COMPUTATIONAL DETAILS

A number of different basis sets were used in these cal-

culations. For the CASSCF derivative calculations, which

were used to locate the stationary points, the valence double

zeta set of Dunning and Hay 13 was used. The basis set for C

is the (9s5p)/[3s2p] basis and the H basis is (4s)/[2s],

i.e., the polarization functions are omitted. The ICCI calcu-

lations used the Dunning correlation consistent polarized va-

lence double zeta and triple zeta basis sets 14 (cc-pVDZ and

cc-pVTZ). The CASSCF is an 8 electron/8 orbital calcula-

tion with 4 a' and 4 a" active orbitals. This calculation cor-

relates the valence electrons which correspond to the four

electrons of acetylene and the two _r and two carbene elec-

trons of vinylidene for the acetylene plus vinylidene asymp-

tote (see Sec. II). The subsequent ICCI calculations also

were based on the 8/8 active space and included all reference

configurations that can be constructed from this active space,

with the constraint that no more than two electrons are al-

lowed in the four weakly occupied orbitals. The CCSD(T)

calculations were carried out with a [4321/321] ANO basis 15

set (i.e., of pVTZ quality), using structures which were op-

timized at the SCF level using the 4-31G** basis set.

Calculations were also carried out for vinylidene, acety-

lene, and the saddle point connecting them. These calcula-

tions used the TZ+2P basis set CCSD geometries from Ref.

4. The calculations were based on a ten electron/ten orbital

CASSCF calculation and subsequent ICCI calculation with

the Dunning cc-pVTZ basis set.

The CASSCF gradient calculations used the SIRIUS/
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TABLE I. Computed energetics for the vinylidene to acetylene rearrange-

ment.

Geometry ICCI(1CCI + Q + 77) A E" ZpE b AE"

s.p. -77.101 46(-0.113 01) 3.1 0.021 02 !.3

vinylidene -77.106 19(-0.117 99) 0.0 0.023 91 0.0

acetylene -77,177 77(-0.187 87) -43.9

=Energy difference in kcal/moI including zero-point energy.

_Zero-point energy in Eh.

ABACUS system of programs, 16 while the ICCI calculations
were carried out with MOLPRO. 17'18 The active spaces for
these calculations are as discussed above. The CCSD calcu-
lations were carried out with TITAN.19All electrons were cor-

related except for the C 1s like electrons. A multireference
analog of the Davidson's correction 2° was added to the ICCI

energies and is denoted by + Q.

The saddle points were located using an image surface
method. 21 The image surface minimization method uses a

topological transformation of the original surface so that a

saddle-point search becomes a minimization on the image
surface. The image surface approach used here employs a

quadratic approximation to the original surface and a trust-
region-based optimization. In practice it is found that this

method works well provided the starting geometry is within

the region of the surface with the correct eigenvalue structure

(one negative eigenvalue). Once the saddle points are located
the minima which are connected by each saddle point are

determined by following the gradient in both directions away
from the saddle point. These walks are started by displacing

the system slightly in the direction of the negative eigenvalue
of the Hessian matrix.

IV. DISCUSSION

Table I shows computed energetics for vinylidene, acety-

lene, and the saddle point connecting them. As discussed in
Sec. III, the geometries and harmonic frequencies are taken
from the CCSD calculations with a TZ+2P basis set of Ref.

4. The zero-point effects were "estimated as 1/2 the sum of

TABLE II. Energies for stationary points on the C4H,, surface.

Geometry ICCI(ICC1+ Q + 154) ZPE b AE (kcal/mol) a

Reactants - 154.094 91 (-0.149 60) 0.052 76 0.0

spl - 154.085 54(-0.143 84) 0.055 65 5.4

mini -154.120 12(-0.181 96) 0.06029 -15.6

sp2 - 154.124 58(-0.185 35) 0,058 36 - t8•9

min2 - 154.187 02(-0.244 77) 0.062 45 -53.6

sp3 -15409839(-0.161 28) 0.05947 -3.1

min3 - 154.099 48(-0.165 10) 0.060 20 -5.1

sp6 - 154.086 35(-0.152 58) 0.056 95 0.8

min4 -154.09846(-0.163 14) 0.05999 -4.0

sp8 - 154.074 07(-0.136 55) 0.054 01 9.0

sp5 -154.11270(-0.17464) 0.05770 -12.6

min5 - 154.158 02(-0.214 38) 0.061 07 -35.4

sp7 - 154.155 51(-0.212 87) 0.057 30 -36.9

min7 - 154.230 50(-0.285 86) 0.063 28 -78,9

aEnergy difference in kcal/mol including zero-point energy•
bZero-point energy in Eh.
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FIG. 3. Computed energetics for the minimum energy path leading from

vinylidene plus acetylene to vinylacetylene. The energeties are from ICCI

calculations, using the Dunning cc-pVDZ basis set and include a correction

for zero-point effects based on harmonic frequencies derived from an (8/8)

CASSCF calculation (see the text).

the harmonic frequencies and these are included in the rela-
tive energies which are given in the last column of Table I.

Thus, the relative energies are appropriate for comparison to

experimental results corrected to 0 K. These results show a
barrier height of 3.1 kcal/mol, which is reduced to 1.3 kcal/

mol when zero-point effects are included. This is in agree-
ment with the best estimate of 3 kcal/mol for the classical

barrier height made in Ref. 4.

Table II shows the computed ICCI energies obtained at
the optimized CASSCF geometries. The energetics for the

pathway leading from vinylidene plus acetylene to vi-
nylacetylene are also shown in Fig. 3. Tables AI and AII in
the PAPS material 22 give the harmonic frequencies and the

Cartesian coordinates for the CASSCF optimized structures,

respectively.
From Table II it is seen that the barrier for addition of

vinylidene to acetylene is 5.4 kcal/mol. Since the addition of
CH to acetylene involves no barrier, 23 it is probable that the

barrier in vinylidene plus acetylene arises from nonbonded

repulsions with the CH bonds of the CH2 group. This is
evident in the saddle point geometry, shown in Fig. 2, which

has the CC bond of vinylidene tipped away from the ap-

proximately parallel orientation with the CC bond in acety-
lene that was seen in the case of CH addition. This saddle

point was obtained in C s symmetry. From Table AI it is seen

TABLE 11I. ICCI energies at selected steps along the minimum energy

pathway from min5 to min7 via sp7.

Geometry' ICCI(ICCI + Q + 154)

min5 - 154.158 02(-0.214 38)

step8 - 154.157 37(-0.214 07)

step5 - 154.155 94(-0.213 56)

step2 - 154.155 27(-0.213 04)

sp7 - 154.155 51(-0.212 87)

step02 - 154.157 47(-0.214 23)

step04 - 154.164 15(-0.220 23)

"Cartesian coordinates for the geometries are given in the PAPS.
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TABLE IV. CCSD(T) energies for some C4H 4 isomers.

Structure CCSDT(T) ZPE = AE AH/, 0 K

acetylene+acetylene - 154.390 854 0.052 840 -42.1 108.7 b

acetylene+vinylidene - 154.320 570 0.049 690 0.00 150.8

vinylacetylen¢ - 154.459 403 (0.059 60) -80.9 72.2

cyclobutadiene (rainS) - 154.404 368 0.059 543 -46.4 104.4

methylenecyclopropene - 154.420 193 0.058 786 -56.8 94.0

(_)
carbenecyclopropane - 154.369 844 0.058 752 -25.2 125.6

(rain9)

Imtatriene (gain 10) -154.446762 0.058073 -73.9 76.9

bicyclobutene (minll) -154.351 545 0.059 298 -13.4 137.4

tetrahedmne (minl2) - 154.359 985 0.058 281 - 19.3 131.5

_n'o-point energy obtained as 1/2 the sum of the SCF frequencies x 0.9.

The vinylacetylene zero-point energy is from the CASSCF frequencies

without scaling.
bAcetylene heat of formation is from Ref. 24.

that there is a small imaginary frequency corresponding to

symmetry breaking. Thus, the true saddle point may be non-
planar. This effect, which was not investigated further, could

lower the barrier for addition slightly. The remaining saddle

points are true saddle points i.e., they have only one imagi-

nary frequency.
From Fig. 3 it is seen that sp2 is below mini at the

ICCI+Q level of theory. This suggests that on the ICCI sur-

face the energy decreases monotonically from sp 1 to rain2.
Min2 (methylenecyclopropene) is a deep minimum on the

surface. Min3 appears to be a shallow minimum with saddle
points sp3 and sp6 on either side of it. However, it is mono-

tonically down hill from sp6 to min5 (vinylvinylidene). sp7

is 0.9 kcal/mol above vinylvinylidene, but with inclusion of

zero-point effects sp7 is 1.5 kcal/mol below vinylvinylidene.
Negative ion photodetachment experiments indicate that vi-

nylvinylidene has a short lifetime with respect to the 1,2-

hydrogen shift leading to vinylacetylene. This would seem to
imply at least a small barrier for conversion of vinylvi-

nylidene to vinylacetylene. In order to provide more infer-

FIG. 4. Stationary point structures for some C4H4 isomers.

Top row: min8 (cyclobutadiene), rain2 (methylene cyclopropene), rain9

(carbenccyclopropane).

Bottom row: mini0 (butatriene), minll (bicyclobutene), minl2 (tetrahe-

dran,).

marion on this point, calculations were carried out to charac-

terize the minimum energy path connecting vinylvinylidene
to vinylacetylene. The reaction pathway was obtained by fol-

lowing the gradient in both directions away from sp7. The

Cartesian coordinates at the steps on the pathway are given
in the PAPS, 22 while the ICCI energies at selected points

along the pathway are given in Table IlL From Table III it is

seen that the maximum in the energy along the path occurs

very near sp7. Thus, the best estimate of the non-zero-point
corrected barrier height is 0.9 kcal/mol. This is significantly

smaller than the barrier height of 3.1 kcal/mol obtained for
the 1,2 hydrogen shift in vinylidene.

From Table II the barrier for the conversion of vi-

nylacetylene to vinylidene plus acetylene is 84.3 kcaYmol.
This is in reasonable agreement with the estimated activation

energy of 79.5 kcal/mol for the dissociation of vinylacety-
lene to two acetylenes by Kiefer et al. s

Table IV shows relative energies for a number of iso-

mers of C4H4 obtained by the CCSD(T) method and Table V

shows energies for calculations on the same structures using
the ICCI method. Tables AIII and AIV of the PAPS 22 give

the Cartesian coordinates and harmonic frequencies for these
stationary points. Figure 4 shows the geometries of these

isomers. The CCSD(T) calculations were carried out with

TABLE V. ICCI energies for some C41-14 isomers.

pVDZ pVTZ

Structure ICCI(ICCI+Q) AE ICCI(ICCI+Q) AE

acetylene - 154.089 73(-0.141 83) 0.0 - 154.221 95(-0.289 20) 0.0

+ vinylidene

cyclobutadiene - 154.171 69(- 0.228 17) -47.2 - 154.300 38(-0.371 59) -45.5

(min8)

methylene- - 154.184 14(-0.240 27) -55.3 - 154.316 50(-0.387 56) -56.0

cyciopropene

(rain2)

carbene- - 154.138 66(-0.194 83) -26.8 - 154.262 86(-0.335 73) -23.5

cycloptopane

(min9)

butatriene - 154.212 89(-0.267 60) -72.9 - 154.344 71(-0.414 36) -73.3

(minlO)

bicyclobutene - 154.114 26(-0.174 37) - 13.6 - 154.242 77(-0.317 68) - 11.8

(min11)
tetrahedrane - 154.115 91(-0.175 40) - 14.9 - 154,249 37(-0.324 32) - 16.6

(rain12)

vinylviny|idene - 154.158 02(-0.214 38) -39.8 - 154.279 12(-0.350 94) -33.8

vinylacetylene - 154.230 50(-0.285 86) -83.4 - 154.360 08(-0.427 62) -80.6
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ANO basis sets of polarized triple zeta quality while the
ICCI calculations made use of the cc-pVDZ and cc-pVTZ

basis sets. The zero-point energies were obtained from the

SCF harmonic frequencies scaled by 0.9. In the case of vi-
nylvinylidene and vinylacetylene the SCF zero-point correc-

tion was estimated from the CASSCF harmonic frequencies

scaled by 0,942. This value is the scale factor needed to give

the same zero point energy for the vinylidene plus acetylene
asymptote as that given from the scaled SCF frequencies.

A number of interesting structures are shown in Tables

IV and V and Fig, 4. Those with energy below two acety-
lenes (energy relative to vinylidene+acetylene in parenthe-
ses) are vinylacetylene (-80.9), butatriene (-73.9), methyl-

enecyclopropene (-56.8), and cyclobutadiene (-46.4).

From the comparison of Tables IV and V it is seen that there

is good agreement between the ICCI and CCSD(T) results.
The ordering of these structures is in at least qualitative ac-

cord with the results of Ref. 10. A saddle point (sp8) was

found connecting min4 to butatriene; however, the barrier

height of 9.0 kcal/mol, with respect to reactants, suggests
that this would be a minor pathway.

Melius et al. 9 reported computed reaction pathways for

the thermal decomposition of vinylacetylene. These authors
discussed a carbene mechanism involving vinylidene but do

not show the vinylidene plus acetylene asymptote in Fig. 2 of

their paper. (Presumably because the vinylidene would rap-

idly convert to acetylene in the thermal decomposition pro-

cess,) In Fig. 2 of Ref. 9 they show a barrier leading from
methylenecyclopropene to two acetylenes. However, it is

likely that this process proceeds through vinylidene plus
acetylene. Positioning the vinylidene plus acetylene asymp-

tote 43 kcal/mol above the asymptote for two acetylenes, this
figure is consistent with a small barrier separating methyl-

enecyclopropene from vinylidene plus acetylene. These au-
thors also show a barrier between methylenecyclopropene

and vinylacetylene as well as a shoulder on the curve. It is
tempting to speculate that the shoulder corresponds to vi-

nylvinylidene. However, this is not discussed in their paper.

V. CONCLUSIONS

We report reaction pathways and accurate energetics
(from CASSCF/gradient plus ICCI calculations with a cc-

pVDZ basis set) for the reaction pathway connecting vi-
nylidene plus acetylene to vinyl acetylene. There is a barrier

of about 5 kcal/mol for the addition of vinylidene to acety-

lene but the remaining barriers are all lower than this. The
calculations suggest that vinyivinylidene represents at most a

shallow minimum on the potential energy surface, which can

undergo a facile 1,2-hydrogen shift leading to vinylacety-
lene. These potential surface features are at least in semi-

quantitative agreement with the BAC/MP-4 calculations of
Melius et al. for the thermal decomposition of vinylacety-
lene.

We also report CCSD(T) calculations with an ANO basis
set of pVTZ quality for a number of minima on the C4H4

PES. Those with energy below two acetylenes (energy rela-

tive to vinylidene+acetylene in parentheses) are vinylacety-
lene (-80.9), butatriene (-73.9), methylenecyclopropene

(-56.8), and cyclobutadiene (-46.4).
The calculations predict a separation between acetylene

and vinylidene of 43.9 kcal/mol and a barrier to isomeriza-

tion of vinylidene to acetylene of 1.3 kcal/mol (including
zero-point effects) in good agreement with the published re-
suits of Ref. 4.
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